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Clinical Motivation

CT number depends on x-ray attenuation

— Physical density (g/cm?3) [electron-density]
— Atomic number (Z)

Different materials can have the same CT number if
atomic number differences are offset by appropriate
density differences

Multi-energy CT

— Allows separate determination of density and Z

— Can provide material composition information
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Acquire data with different beam spectra to

exploit the energy-dependent nature of CT #

First proposed in 1973 .... by Hounsfield
Clinically implemented by one manufacturer for a short time in mid 80’s

rapid voltage switching

Kelcz et al: Med Phys 6, 418-25, 1979
Lehmann et al: Med Phys 8, 659-67, 1981
Kalender et al, Med Phys 13, 334, 1986

~low voltage i . .
1 soft tissue image

i) i
I |-high voltage | !

,"A“I-E\“\\ “____“__j
Kalender, Computed Tomography,

atanuation profiles J’}é{znuu Publicis Corporate Publishing, 2005.
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Spectral separation is key!
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Current Acquisition Methods for
Multi-Energy CT:

Single Tube Potential
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Split Beam Filtration

» Single spiral acquisition over entire scan volume

» One spectrum lags the other by half a rotation

Au filter
Sn filter
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Spectra: Split Beam Filtration

Spectrum after filter
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Dual Layer Detectors

X-rays

Reflectors

Photodiode

Photodiode

Low energy spectrum
High energy spectrum




Spectra: Dual Layer Detectors
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Photon Counting Detectors

Semiconductor
detector directly
converts x-ray to
charge (e. g. CdTe)

TRV T T 1

Two or more energy levels

Signals are “binned” according to energy level

Thresholds to pulse height comparators

% JL H
I | DAC P Counter 1 Digital output
} DAC — ~ Cotinter 2 Digital output

Input
analog
pulses l

Preamp

DAC Counter N

Digital output

* Courtesy Ken Taguchi, John Hopkins

Low Energy Bin
High Energy Bin
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Spectra: Photon-counting, 2 energy bins
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In vivo results

» 63 year old female (30 cm lateral width at kidney)

e Non-contrast-enhanced CT of the abdomen

M|Xed DSCT PCCT - TIOW
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Current Acquisition Methods for
Multi-Energy CT:

Dual Tube Potential
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Slow kVp switching

» Consecutive scans of entire scan volume

Axial

Inter-scan delay = scan time + table move time

Unacceptable motion misregistration for most cases
May be acceptable for large volume acquisitions
(entire volume scanned in one rotation)
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Slow kVp switching

» Consecutive scans of one anatomic section

Axial

Inter-scan delay = rotation time + kV switching time

Motion misregistration will limit many applications
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Spectra: Dual Tube Potentials
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Rapid kVp switching

» Tube potential switched between successive views

Axial or spiral acquisitions

Temporal resolution = Essentially unchanged
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Spectra: Rapid kV switching
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Dual-source geometry

» Two tubes/generators allow simultaneous collection
of dual-kVp data

Axial or spiral acquisitions
Temporal resolution = Unchanged
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Spectra: Dual-source geometry

Energy detected - spectrum 80kY vs candidates at 140kY
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Image Rendition Methods
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Multi-energy CT Images

Low / High energy source images
— 80 kV and 140 kV images
Mixed (blended) images

— Combine low and high energy images together
— Linear and non-linear blending

Material

— lodine image, , bone image
Energy selective image

— Virtual monoenergetic (monochromatic) images
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Multi-energy CT Images

» Low / High energy source images

— 80 kV and 140 kV images
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Images at each spectrum or energy bin
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Images at each spectrum or energy bin

|((

» These are the original “source” data

— Archive is possible for subsequent post-processing
e |f needed in future for comparison to future exam

e If new algorithms arrive
— Not typically viewed by radiologist

— Used for trouble shooting
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Multi-energy CT Images

» Mixed (blended) images
— Combine low and high energy images together

— Linear and non-linear blending




WMAYOCLINIC
Multi-energy CT Mixed Images

Linear
140KV —— Blend

70% 140kV
30% 80kV

Non-linear
Blend

Eusemann et al
SPIE 2008
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Optimal Weighting

>

Optimal weighting depends on

— Spectra or energy bins
— Dose partitioning

— Patient size

— Material of interest

lodine CNR

Small

Medium

Large XLarge

Yu et al, Med Phys 2009
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Multi-energy CT Mixed Images

» These are the “routine” images

— Must archive these

— Shared with clinicians

— Used for general reading of the case

— Typically emulate single-energy source images at 120 kV

— Always viewed by radiologists
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DECT need not increase dose

Single Energy (120 kV) . Dual Energy Mixed
Indication: HCC _
March 2009 35_36 cm April 2009

CTDIvol: 18.65 mGy  lateralwidth  c1pjyol: 1559 mGy
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Multi-energy CT Images

Material

— lodine image, , bone image
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Material Decomposition Methods

e
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Data space for operations

» Projection based

— Requires access to projection data

— Requires data consistency between low/high energy
projections

— No beam hardening effect

* Intheory, butin practice it remains due to calibration requirements

» Image based

— Easy to implement, projection data not necessary
— No data consistency problem

— Beam hardening effect can’t be totally removed

* Intheory, but in practice is reasonably well corrected for
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Material Decomposition Methods

_
u-decomposition PE-Compton or basis material
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Decomposition of X-ray Linear Attenuation Coefficient

In diagnostic energy range and for low-Z materials, u
can be described by 2 independent basis functions

— PE and Compton (Alvarez and Macovski, 1976; Heismann et al.
2003 )

— Two basis materials (Lehman et al, 1981; Kalender et al , 1985;
Liu et al, 2009)

u(r E) = ay(r) - pi (E) + ap(r) - uo (E)
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Material Decomposition Methods

_
u-decomposition PE-Compton or basis material
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Material Decomposition Methods

Parameter

Options

Data space

Projection or image space

u-decomposition

PE-Compton or basis material

K-edge

with or without K-edge

Prior constraint on material
composition

With or without prior assumptions on volume or
mass: “3-material decomposition”
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Three Material Decomposition

Two measurements, three unknowns

Additional assumption needed:

— Volume conservation

e Not always true, e.g. salt-water mixture

— Mass conservation

Liu et al, Quantitative imaging of element composition and mass fraction using dual-energy CT:
Three-material decomposition. Med Phys. 2009
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Material Decomposition Methods

Parameter

Options

Data space

Projection or image space

u-decomposition

PE-Compton or basis material

K-edge

with or without K-edge

Prior constraint on material
composition

With or without prior assumptions on volume or
mass: “3-material decomposition”

Task

Quantifying material density in a mixture or
classifying materials
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Classification vs. Quantification

»  Material classification

— Kidney stone characterization

— Gout detection and quantification

— Silicone breast implant leakage

— Automated bone removal in CT angiography
— Plague removal

» Quantifying material density
— Blood pool imaging (Perfused blood volume)

— Virtual non-contrast (lodine removal/iodine image)

— Virtual non-calcium (Bone removal/bone image)




WMAYOCLINIC
Material Classification

Common clinical questions related to material
classification

Uric acid vs. non-uric stones
Bone vs. iodine
Uric acid crystals vs. calcium-containing crystals

Silicone vs. tissue R

DEratio = CT#, g,/ CTHygn = f(2)

Low

Low energy

Independent of
concentration

High energy




WMAYOCLINIC
Dual Source DECT — UA vs Non-UA

Numerous publications on stone composition
differentiation using dual energy CT

Both in vitro and in vivo studies
High accuracy, sensitivity and specificity reported

Used in routine clinical practice
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Color-coded stones from in vivo study

O

COX/BRU/STR O




High density material in soft tissues within and surrounding
joints consistent with tophaceous deposits




December

Before & after images demonstrate 90% reduction in volume of uric acid crystals over 8 months
after receiving multiple infusions of rasburicase.
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Automated Bone Removal in CT Angiography

>

CT angiography is a minimally invasive technique to
determine location, size, and patency of arteries and
veins

Overlying bony anatomy interferes with useful
visualization techniques (eg MIP and VRT)

Manual or semi-automated bone removal can be
labor intensive and/or operator dependent
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Perfused Blood Volume (Blood Pool Imaging)

Assessment of blood distribution with a
measurement made at a single time point

— Perfusion measurements require temporal measurements

Quantitative assessment of perfused blood volume
shown to serve as a surrogate marker for
ischemia/infarct and to correlate with direct
measures of perfusion and flow
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Virtual Noncontrast Images

» Scans performed without contrast media not
routinely included in most contrast-enhanced exams

Unexpected findings (e.g. modestly enhancing renal
masses) may be un-interpretable without a non-
contrast scan for comparison

|dentification and digital suppression of iodine signal
can create a perfectly registered “virtual” non-
contrast scan
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Virtual Non-Calcium Images

>

Traumatic or oncologic bone lesions (bruising,
edema, bone marrow lesions) cannot be

appreciated on CT in the presence of bright calcium
signal

|dentification and digital suppression of calcium
signal can allow appreciation of these findings,
previously observed only with MR










DECT Virtual non-Ca Single energy CT
~ Fi

K




WMAYOCLINIC
Multi-energy CT Images

» Energy selective image

— Virtual monoenergetic (monochromatic) images
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Virtual monoenergetic images

» Decompose source data into basis material maps

— Pixel values represent density of each material

» Look up mass attenuation coefficients (L/p) for each
basis material at the photon value of interest

— E.g. 40 keV, 70 keV, 180 keV

» Calculate linear attenuation coefficient from density
material maps and mass attenuation coefficients
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Virtual Monoenergetic Imaging

Basis material
or PE-Compton
map after
material
decomposition

Synthesize
mono-
energetic
images using
density maps
and mass
attenuation
coefficients
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Monoenergetic Images

Yu et al, Virtual monochromatic imaging in dual-source dual-energy CT: Radiation dose and image quality, Med Phys. 2011




WMAYOCLINIC
Optimal Monoenergetic Energy

Noise vs. Energy

A

lodine CNR vs. Energy

—&— small (monochromatic)
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Yu et al, Med Phys 2011
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Energy-domain noise reduction on monok images

Filtered

Leng et al, Radiology, 2014
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Virtual Monoenergetic Imaging

Improves iodine contrast

With energy domain noise reduction®, can be used
to improve iodine CNR

— Increase conspicuity of subtle lesions

— Allow use of less iodinated contrast media

— Compensate for poor venous access resulting in slow
Injection rates

» Reduces metal artifacts

* Leng et al. 2011
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Virtual Monoenergetic — Metal Artifacts

» Use high keV to reduce strength of metal artifacts

» Use low keV to visualize iodine
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Standard Image Monoenergetic Image (105 keV)
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Virtual Monoenergetic — Metal Artifacts

» |s not metal artifact correction, but allows fast and
flexible reduction of metal artifacts
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Transaortic Valve Replacement

130 keV
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Summary: Multi-energy CT Image Types

e Non-material specificimages ¢ Material specific imaging
— Low/high kV images — Basis material decomposition
— Mixed images — PE-Compton decomposition

— Virtual monoenergetic images — K-edge imaging (photon-
counting multi-energy)

[ !

e Mixed: Provide “routine” set of e Expand clinical applications
images for interpretation - Material classification

e MonokE: Reduce artifacts and (e.g., bone/iodine, uric acid/non-
improve quantitative accuracy uric acid)

Material quantification
(e.g., iodine, bone, high-Z contrast
agent)

e MonokE: Improve iodine CNR and
dose efficiency




