

Data Acquisition and Image Formation Methods for Multi-Energy CT

Cynthia H. McCollough, PhD, DABR, FAIMBE, FAAPM, FACR Professor of Medical Physics and Biomedical Engineering Director, CT Clinical Innovation Center Mayo Clinic, Rochester, MN

Clinical Motivation

F MAYO CLINIC

- CT number depends on x-ray attenuation
 - Physical density (g/cm³) [electron-density]
 - Atomic number (Z)
- Different materials can have the same CT number if atomic number differences are offset by appropriate density differences
- Multi-energy CT
 - Allows separate determination of density and Z
 - Can provide material composition information

Acquire data with different beam spectra to exploit the energy-dependent nature of CT

First proposed in 1973 by Hounsfield Clinically implemented by one manufacturer for a short time in mid 80's

WAYO CLINIC

Kelcz et al: Med Phys <u>6</u>, 418-25, 1979 Lehmann et al: Med Phys <u>8</u>, 659-67, 1981 Kalender et al, Med Phys <u>13</u>, 334, 1986

Kalender, <u>Computed Tomography</u>, Publicis Corporate Publishing, 2005.

Spectral separation is key!

Current Acquisition Methods for Multi-Energy CT: Single Tube Potential

Split Beam Filtration

- Single spiral acquisition over entire scan volume
- One spectrum lags the other by half a rotation

Spectra: Split Beam Filtration

Spectrum after filter

Dual Layer Detectors

Low energy spectrum High energy spectrum

Spectra: Dual Layer Detectors

F MAYO CLINIC

Raz Carmi et al, Material Separation with Dual-Layer CT. IEEE NSSCR 2005

Photon Counting Detectors

WAYO CLINIC

Two or more energy levels

Signals are "binned" according to energy level

* Courtesy Ken Taguchi, John Hopkins

Low Energy Bin High Energy Bin

Spectra: Photon-counting, 2 energy bins

MAYO CLINIC

In vivo results

- ► 63 year old female (30 cm lateral width at kidney)
- Non-contrast-enhanced CT of the abdomen

Mixed DSCT

Current Acquisition Methods for Multi-Energy CT: Dual Tube Potential

Slow kVp switching

WAYO CLINIC

Consecutive scans of entire scan volume

Inter-scan delay = scan time + table move time

Unacceptable motion misregistration for most cases May be acceptable for large volume acquisitions (entire volume scanned in one rotation)

Low kVp High kVp

Slow kVp switching

WAYO CLINIC

Consecutive scans of one anatomic section

Inter-scan delay = rotation time + kV switching time

Motion misregistration will limit many applications

Low kVp High kVp

Spectra: Dual Tube Potentials

FMAYO CLINIC

Rapid kVp switching

F MAYO CLINIC

Tube potential switched between successive views

Axial or spiral acquisitions

Temporal resolution = Essentially unchanged

Low kVp High kVp

Spectra: Rapid kV switching

WAYO CLINIC

 Two tubes/generators allow simultaneous collection of dual-kVp data

Axial or spiral acquisitions Temporal resolution = Unchanged

Low kVp High kVp

Spectra: Dual-source geometry

MAYO CLINIC

High kVp: 400% spectral overlap of low kVp

Primak et al. Med Phys 2009

Image Rendition Methods

Multi-energy CT Images

- Low / High energy source images
 - 80 kV and 140 kV images
- Mixed (blended) images

- Combine low and high energy images together
- Linear and non-linear blending
- Material selective images
 - Iodine image, water image, bone image
- Energy selective image
 - Virtual monoenergetic (monochromatic) images

Multi-energy CT Images

- Low / High energy source images
 - 80 kV and 140 kV images
- Mixed (blended) images

- Combine low and high energy images together
- Linear and non-linear blending
- Material selective images
 - lodine image, water image, bone image
- Energy selective image
 - Virtual monoenergetic (monochromatic) images

Images at each spectrum or energy bin

Low kV

GD MAYO CLINIC

Bin n

Images at each spectrum or energy bin

- These are the original "source" data
 - Archive is possible for subsequent post-processing
 - If needed in future for comparison to future exam
 - If new algorithms arrive

- Not typically viewed by radiologist
- Used for trouble shooting

Multi-energy CT Images

- Low / High energy source images
 - 80 kV and 140 kV images
- Mixed (blended) images

- Combine low and high energy images together
- Linear and non-linear blending
- Material selective images
 - lodine image, water image, bone image
- Energy selective image
 - Virtual monoenergetic (monochromatic) images

Multi-energy CT Mixed Images

Optimal Weighting

Optimal weighting depends on

- Spectra or energy bins
- Dose partitioning
- Patient size

WAYO CLINIC

Material of interest

Multi-energy CT Mixed Images

- These are the "routine" images
 - Must archive these

- Shared with clinicians
- Used for general reading of the case
- Typically emulate single-energy source images at 120 kV
- Always viewed by radiologists

DECT need not increase dose

Single Energy (120 kV) March 2009 CTDIvol: 18.65 mGy

WAYO CLINIC

Indication: HCC 35 – 36 cm lateral width Dual Energy Mixed April 2009 CTDIvol: 15.59 mGy

Multi-energy CT Images

- Low / High energy source images
 - 80 kV and 140 kV images
- Mixed (blended) images

- Combine low and high energy images together
- Linear and non-linear blending
- Material selective images
 - Iodine image, water image, bone image
- Energy selective image
 - Virtual monoenergetic (monochromatic) images

Parameter	Options
Data space	Projection or image space

Data space for operations

Projection based

- Requires access to projection data
- Requires data consistency between low/high energy projections
- No beam hardening effect
 - In theory, but in practice it remains due to calibration requirements
- Image based
 - Easy to implement, projection data not necessary
 - No data consistency problem
 - Beam hardening effect can't be totally removed
 - In theory, but in practice is reasonably well corrected for

Parameter	Options
Data space	Projection or image space
μ-decomposition	PE-Compton or basis material

Parameter	Options
Data space	Projection or image space
μ-decomposition	PE-Compton or basis material
K-edge	with or without K-edge

Parameter	Options
Data space	Projection or image space
μ-decomposition	PE-Compton or basis material
K-edge	with or without K-edge
Prior constraint on material composition	With or without prior assumptions on volume or mass: "3-material decomposition"

Three Material Decomposition

- Two measurements, three unknowns
- Additional assumption needed:
 - Volume conservation

WAYO CLINIC

- Not always true, e.g. salt-water mixture
- Mass conservation

$$\mu_m = m_1 \mu_{m1} + m_2 \mu_{m2} + m_3 \mu_{m3}$$

$$m_1 + m_2 + m_3 = 1$$

Liu et al, Quantitative imaging of element composition and mass fraction using dual-energy CT: Three-material decomposition. Med Phys. 2009

Parameter	Options
Data space	Projection or image space
μ-decomposition	PE-Compton or basis material
K-edge	with or without K-edge
Prior constraint on material composition	With or without prior assumptions on volume or mass: "3-material decomposition"
Task	Quantifying material density in a mixture or classifying materials

Classification vs. Quantification

Material classification

GO MAYO CLINIC

- Kidney stone characterization
- Gout detection and quantification
- Silicone breast implant leakage
- Automated bone removal in CT angiography
- Plaque removal
- Quantifying material density
 - Blood pool imaging (Perfused blood volume)
 - Virtual non-contrast (lodine removal/iodine image)
 - Virtual non-calcium (Bone removal/bone image)

Material Classification

- Common clinical questions related to material classification
 - Uric acid vs. non-uric stones
 - Bone vs. iodine

WAYO CLINIC

- Uric acid crystals vs. calcium-containing crystals
- Silicone vs. tissue

```
DEratio = CT\#_{Low}/CT\#_{High} \approx f(Z)
```

Independent of concentration

Dual Source DECT – UA vs Non-UA

- Numerous publications on stone composition differentiation using dual energy CT
- Both *in vitro* and *in vivo* studies

GD MAYO CLINIC

- High accuracy, sensitivity and specificity reported
- Used in routine clinical practice

HU at 80 kV

Ē

HU at 140 kV

Color-coded stones from in vivo study

High density material in soft tissues within and surrounding joints consistent with tophaceous deposits

Before & after images demonstrate 90% reduction in volume of uric acid crystals over 8 months after receiving multiple infusions of rasburicase.

Automated Bone Removal in CT Angiography

- CT angiography is a minimally invasive technique to determine location, size, and patency of arteries and veins
- Overlying bony anatomy interferes with useful visualization techniques (eg MIP and VRT)

G MAYO CLINIC

 Manual or semi-automated bone removal can be labor intensive and/or operator dependent

Perfused Blood Volume (Blood Pool Imaging)

 Assessment of blood distribution with a measurement made at a single time point

F MAYO CLINIC

Perfusion measurements require temporal measurements

 Quantitative assessment of perfused blood volume shown to serve as a surrogate marker for ischemia/infarct and to correlate with direct measures of perfusion and flow

Virtual Noncontrast Images

- Scans performed without contrast media not routinely included in most contrast-enhanced exams
- Unexpected findings (e.g. modestly enhancing renal masses) may be un-interpretable without a noncontrast scan for comparison
- Identification and digital suppression of iodine signal can create a perfectly registered "virtual" noncontrast scan

Virtual Non-Calcium Images

- Traumatic or oncologic bone lesions (bruising, edema, bone marrow lesions) cannot be appreciated on CT in the presence of bright calcium signal
- Identification and digital suppression of calcium signal can allow appreciation of these findings, previously observed only with MRI

Multi-energy CT Images

- Low / High energy source images
 - 80 kV and 140 kV images
- Mixed (blended) images

- Combine low and high energy images together
- Linear and non-linear blending
- Material selective images
 - lodine image, water image, bone image
- Energy selective image
 - Virtual monoenergetic (monochromatic) images

Virtual monoenergetic images

- Decompose source data into basis material maps
 - Pixel values represent density of each material
- Look up mass attenuation coefficients (µ/p) for each basis material at the photon value of interest

– E.g. 40 keV, 70 keV, 180 keV

F MAYO CLINIC

 Calculate linear attenuation coefficient from density material maps and mass attenuation coefficients

The MAYO CLINIC

Virtual Monoenergetic Imaging

Monoenergetic Images

WAYO CLINIC

Yu et al, Virtual monochromatic imaging in dual-source dual-energy CT: Radiation dose and image quality, Med Phys. 2011

Optimal Monoenergetic Energy

Noise vs. Energy

GD MAYO CLINIC

Iodine CNR vs. Energy

Yu et al, Med Phys 2011

Energy-domain noise reduction on monoE images

WAYO CLINIC

Leng et al, Radiology, 2014

Virtual Monoenergetic Imaging

Improves iodine contrast

- With energy domain noise reduction*, can be used to improve iodine CNR
 - Increase conspicuity of subtle lesions
 - Allow use of less iodinated contrast media
 - Compensate for poor venous access resulting in slow injection rates
- Reduces metal artifacts

140 kV

50 keV

Virtual Monoenergetic – Metal Artifacts

- Use high keV to reduce strength of metal artifacts
- Use low keV to visualize iodine

Standard Image

Monoenergetic Image (105 keV)

Virtual Monoenergetic – Metal Artifacts

- Use high keV to reduce strength of metal artifacts
- Use low keV to visualize iodine

F MAYO CLINIC

 Is not metal artifact correction, but allows fast and flexible reduction of metal artifacts

Transaortic Valve Replacement

F MAYO CLINIC

Summary: Multi-energy CT Image Types

- Non-material specific images
 - Low/high kV images
 - Mixed images

WAYO CLINIC

- Virtual monoenergetic images

- Mixed: Provide "routine" set of images for interpretation
- MonoE: Reduce artifacts and improve quantitative accuracy
- MonoE: Improve iodine CNR and dose efficiency

- Material specific imaging
 - Basis material decomposition
 - PE-Compton decomposition
 - K-edge imaging (photoncounting multi-energy)

- Expand clinical applications
 - Material classification (e.g., bone/iodine, uric acid/nonuric acid)
 - Material quantification (e.g., iodine, bone, high-Z contrast agent)